COP 3330: Object-Oriented Programming
Summer 2010

Exception Handling In Java

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3330/sum2010

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3330: Exception Handling In Java Page 1 © Mark Llewellyn

Exception Handling In Java

- When a program encounters a runtime error, it

terminates abnormally.

« What we would like as software developers, Is
for our programs to either continue execute or
else terminate gracefully in the event of a run-

time error.

» In Java an exception Is an object created from an

exception class.

COP 3330: Exception Handling In Java

Page 2

© Mark Llewellyn

s

Exception Handling In Java

To demonstrate exception handling, consider the following code
that reads two integers and computes their quotient. What

happens when you enter 5 and 2? What happens when you enter
5 and 07?

PrintCalendarWithRea m PetDatabase java Quotient.java 7% i)

1 - = 7 E " - T = 17 < -
First example in Exception Handling notes
PR o . S
COP 3330 - Summer 2011

S MJL e/23/72011
import java.util.Scanner;

public class Quotient {
pubklic static wvoid main (String args[]){
Scanner input = new Scanner (System.1in);

P S s . _— P - _— PE—— - — _— = T
//Prompt user to enter two intege vaiues

Svstem.cut.println ("Please enter two integer numbers...
System.out.print ("Enter integer 1: ");:
int numberl = input.nextInt():
System.ount.print ("Enter integer 2: ");
int number?Z = input.nextInt():
System.out.println{"\n" + numberl + " / " + numberz + " ="
F (numberl /number?)) ;
y//end main method

fdsend class Yuaotientc

COP 3330: Exception Handling In Java © Mark Llewellyn

Exception Handling In Java

El Console & 4 %| Ex Gb|&E

<terminated> Quotient [Java Application] C:\Program Files\Jas
FPlease enter two integer numbers...

Enter integer 1l: &

Enter integer 2: =

6 f 3 =2
Run-time exception

Enter 6 and 3...no problem!

El Console £ ; B~
<terminated> Quotient [Java Application] C:\Program Files\Java\jref\bin'\javaw.exe (Jun 23, 2011 2:01:00 PM)
Please enter two integer numbers...

Enter integer 1: ¢

Enter integer 2: [

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Quotient.main(Quotient.java:l7)

Enter 6 and 0...o0ps!

COP 3330: Exception Handling In Java © Mark Llewellyn

Exception Handling In Java

« Asimple fix to the quotient code to fix this problem is shown below.

B
m PrintCalendarWithRea (m PetDatabase.java (m Quotient.java (m QuotientWithIfStmt,) 2 =

' Second example in Exception Handling notes
' Posszsible fix to first example

i P
LWL

f MJL

Simple fix is to insert an if
statement to make sure that the 2nd

i t 3 .1til. 5 H .
Hpert Java.ues cannes number is not zero.

public class CuotientWithIf5tmt {
public =static void main (String afgs[]){
Scanner input = new Scanner jSystem.in);

J{Prompt user to enter two/integer wvalues
System.ocut.println ("Pleg=se enter two integer
System.ocut.print ("Entexr/integer 1: ") :
int numberl = input.ngxtInt ()
System.ocut.print ("Enfer integer 2: "):
int nunmberZ = inpuy.nextInt () ;
if (numberZ !'= 0)
Syatem. out.println ("\n" + numberl + " / " + number? + " ="
+ (numberl/numberz)) ;
el=e
System.cut.println("Divisor cannot be =zZero...Program terminates.™) !
Y/ /end main method
Y//end class Quotient

COP 3330: Exception Handling In Java © Mark Llewellyn

Exception Handling In Java

i LY

1§ Package Explorer i = O/ [4] Quotient,java (m QuotientWithifStmt.java &

= // Second example in Exception Handling notes
'/ Possible fix to first example

T TN 299N Can = IO
§od Soold — oummer ULl

15': Bxam 1 - Summer 2011
1= Exception Handling
[src
#} (default package)
[J] Quotient.java
] QuotientWithifStmt public class QuotientWithIfStmt |
B JRE System Library [JavaSE-1 = public static void main (String args[]){
2% In Class Practice #1 Scanner input = new Scanner (System.in);
125 In Class Practice #2 //Prompt user to enter two integer values

T.%"I Tnterfares Cuatem At nrintln ("Eleazse antear trn intemsar nnmh

g - = b
B Console 3 X% GBEE #B-r9-°0
<terminated> QuotientWithlfStmt [Java Application] C:\Program Files\Java\jre6\bin'javaw.exe (Jun 23, 2011 3:30:30 PM)

Please enter two integer numbers...

f/ MJL &/23/2011

import java.util.Scanner;

Enter integer 1: &
JEoter dntemgsy 2 0
Diviszor cannot be zero...Program terminates.

COP 3330: Exception Handling In Java © Mark Llewellyn

Exception Handling In Java

 We can rewrite the quick fix solution to our
Quotient program using exception handling.
This 1s shown on the next page.

* Notice that the exception handling version is
somewhat larger than the simple fix version.
This example 1s too small to actually achieve
any serious benefit from exception handling and
as such we would not typically employ
exception handling In this sort of situation...this
was an example only.

’

COP 3330: Exception Handling In Java Page 7 © Mark Llewellyn g").

-
|I| Quotient.java ﬂII QuotientWithIfStmt.java

=) First example using Exception Handling
SO/ Modification of the Quotient example
SY COP 3330 — Summer 2011
fFf MJL &/23/2011

import java.util.Scanner;

pobklic class QuotientWithExceptionHandling {
= pobklic static void main (String args[]) 4

Scanner input = new Scanner (System.in) ;
SSABrompt user to enter twWo integer wvalues
Syvetem.cutf.println ("Please enter Ttwo integer nunmkbers...") !
Sveztem.cut.print ("Enter integexr 1: ™) »
int nmumberl = input.nextInt():
Svztem.cut.print ("Enter integer 2: ") trybbCk
int numbersy = inpput nextInt () =
SFetart try block \\
try {
if (mumlberZ2 =— 0)
throw new ArithmeticException("Divi=or cannot be zerol™);
System.out.printlon ("™ 4+ numberl 4+ " F " 4+ numberZ 4+ T = ¢
\\ + (numberl/number2)) : 4/
YA Send vy Bl oek
4 catch (Exception ex) { catch block
Svstem.ocubf.println("Exception: An integer cannot™
" be divided by =zeroc."™):
_ YA /rend catch block
Svstem.ocut.println {("Program execution continues at this point..."™):

I }//end main method
}//end class Quotient

COP 3330: Exception Handling In Java Page 8 © Mark Llewellyn “

Exception Handling In Java

f . m|
ECunsuIeE:i\ WMEEL’E'F‘}'
<terminateds QuobientWithExceptionHandiing [Java Application] C:\Program Fles\ava\jre6\oim\javaw.exe {Jun 23, 2011 3:39:03 PM|

Please enter two integer numbers...

Enter integer 1. &
Enter integer 2: (

@xceptinn: An integer cannot be divided by zero. J v\\\\\\\\\\

Program execution continues at this point...

Output from the catch block
that caught the thrown
exception

COP 3330: Exception Handling In Java © Mark Llewellyn

Exception Handling In Java

The try block contains the code that Is executed In normal
circumstances.

The catch block contains the code that Is executed when an
exception occurs.

In this case, the program throws an exception by executing
throw new ArithmeticException (“Divisor cannot be zero”);
The value thrown, is called an exception.

The execution of a throw statement is called throwing an
exception.

The exception is an object created from an exception class. In
this case, the exception class IS
Java.lang.ArithmeticException.

#
COP 3330: Exception Handling In Java Page 10 © Mark Llewellyn @j

Exception Handling In Java

When an exception is thrown, the normal execution
flow Is interrupted.

As the name suggests, “throwing an exception™ IS 10
pass the exception from one place to another.

The exception is caught by the catch block.

The code In the catch block Is executed to handle the
exception. Afterward, the statement immediately after
the catch block iIs executed (i.e., normal execution flow
resumes).

The throw statement Is analogous to a method call, but
Instead of calling a method, it calls a catch block.

¢

COP 3330: Exception Handling In Java Page 11 © Mark Llewellyn g").

Exception Handling In Java

 In this sense, a catch block is like a method definition
with a parameter that matches the type of the value
being thrown.

« Unlike a method, after executing the catch block, the
program control does not return back to the throw

statement; Instead, It executes the next statement after
the catch block.

 The identifier ex In the catch block header:

catch (ArithmeticException ex)

acts very much like a parameter in a method. So this
parameter Is referred to as a catch block parameter.

COP 3330: Exception Handling In Java Page 12 © Mark Llewellyn g").

Exception Handling In Java

« The type (e.g. ArithmeticException)
preceding ex specifies what kind of exception
the catch block can catch.

« Once the exception Is caught, you can access the

thrown value from this parameter in the body of
a catch block.

 The following page shows a template for a
generic try-throw-catch block.

COP 3330: Exception Handling In Java Page 13 © Mark Llewellyn g’)n

Exception Handling In Java

try |
code to try;
throw an exception with a throw statement or from
a method if necessary.
more code to try;
}
catch (type ex) {

code to process the exception;

generic try-throw-catch block

COP 3330: Exception Handling In Java © Mark Llewellyn

Advantages of Exception Handling

* The biggest advantage of exception handling In
Java Is the ability it provides for a method to
throw an exception back to its caller.

« Without this capability the method would be
required to either handle the exception itself or
to terminate the program.

« The following example illustrates this
advantage.

COP 3330: Exception Handling In Java Page 15 © Mark Llewellyn g").

e
[J] Quotientjava | [J] QuotientWithlfStmtjava | [J] QuotientWithExceptionHa [J] QuotientWithMethod.java 2

pobklic cla=s=s JuotientWithMethod {

= public =tatic int guotient (int nunbkerl, int numbexr2) {
if (mumberZ == 0)
throw new LrithmeticException ("Divi=or cannot be zerol!™):; 3
retorn nunmberl/number?
Y/ end method guotient

Exception occurs

= pobklic =tatic wvoid main (String arg=s[]1)4 here... thrown back to

Scanner input = new Scanner (System.in) caller in main
SSAPrompt user to enter two integer walues
Svestem.ocut.println ("Please enter two integer numbers...") !
Sv=tem.ocut.print ("Enter integer 1: ") ;
int numberl = input.nextInt ()
Sy=tem.ocut.print ("Enter integer Z2: ") ;
int nmumber? = input.nextInt () :
Sistart try block E
try {

int result = gnetient (numberl, number2) :

Svstem.ocut.println("\n" + numberl + " / " + numberz + " = "

+ (numberl / number2)) ;

Y, end try bBlock

catoh (Exception ex) e
Svstem.ocut.println ("Exception Message #1: An integer cannot™ +
" be divided by zero."):
Sithe next output usesz the parameter wvaluese passced from the exception meth

Svstem.ocut.println("Exception Message #2: " + ex);
y,iend catch block
Svestem.ount.println ("Program exXxecution continues at this point...") ! |

Y/ /end main method
Y, Fend class QuotientWithMethod I

COP 3330: Exception Handling In Java Page 16 © Mark Llewellyn

22 - Excention Handina/arc/QuotientWithMethodjava - cipe

File Edit Source Refactor Navigate Search Project Run Window Help

B0 Q- HG- MEA- PAvill B

= | i
X% HEE B8
<terminated: QuotientWithMethod [Java Application] C:\Program Files\Java\jreb\bin\javaw.exe (Jun 23, 2011 3:50:47 PM)

Pleaze enter two integer numbers... @
Enter integer 1: ¢

=

Enter integer 2. 0

h:-meptinn Message #1: In integer cannot be divided by zero.

Exception Message #2: java.lang.ArithmeticException: Divisor cannot be zero!
Program execution continuez at this point...

COP 3330: Exception Handling In Java Page 17 © Mark Llewellyn

Exception Types

The catch block parameter in the QuotientWithMethod
example is of the ArithmeticException type.

You can use the Throwable class or any subclass of
Throwable. ArithmeticException IS a subclass of
Throwable.

The Throwable class Is contained in the java.lang package,
and subclasses of Throwable are contained in various packages.
Errors related to GUI components are included in the java.awt
package; numeric exceptions are included In the java.lang
plackage, because they are related to the java.lang.Number
class.

You can create your own exception classes by extending
Throwable or asubclass of Throwable.

The following page shows some of Java’s predefined exception
classes.

”
COP 3330: Exception Handling In Java Page 18 © Mark Llewellyn gjj

Exception Types

ClassNotFoundException

IOException

ArithmeticException

Exception AWTEXception

RuntimeException q—

Throwable L Several more classes

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

LinkageError L Several more classes

VirtualMachineError

AWTError

L Several more classes

COP 3330: Exception Handling In Java Page 19 © Mark Llewellyn

System errors are thrown by JVM and SyStem ErrOrS

represented in the Error class. The
Error class describes internal system
errors. Such errors rarely occur. If one ClassNotFoundException
does, there is little you can do beyond
notifying the user and trying to
terminate the program gracefully.

IOException

ArithmeticException

Exception AWTEXception

NullPointerException

RuntimeException

IndexOutOfBoundsException

Throwable L Several more classes

Illegal ArgumentException

LinkageError L Several more classes

VirtualMachineError

AWTETrror

Several more classes

COP 3330: Exception Handling In Java Page 20 © Mark Llewellyn

Exceptions

Exceptions describes
errors caused by your
program and external
circumstances. These ClassNotFoundException
errors can be caught and
handled by your program.

IOException

ArithmeticException

Exception AWTEXception

RuntimeException <]7

Throwable L Several more classes

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

LinkageError L Several more classes

VirtualMachineError

AWTError

L Several more classes

COP 3330: Exception Handling In Java Page 21 © Mark Llewellyn

Runtime Exceptions

A RuntimeException is
caused by programming
errors, such as bad
casting, accessing an
out-of-bounds array, and IOException
numeric errors.

ClassNotFoundException

ArithmeticException

Exception AWTEXception

NullPointerException

RuntimeException

IndexOutOfBoundsException

Throwable L Several more classes

Illegal ArgumentException

LinkageError L Several more classes

VirtualMachineError

AWTError

L Several more classes

COP 3330: Exception Handling In Java Page 22 © Mark Llewellyn

Checked vs. Unchecked Exceptions

* RuntimeException, Error, and their subclasses are
known as unchecked exceptions. All other exceptions are known
as checked exceptions.

Checked exceptions means that the compiler forces the
programmer to check and deal with them.

In most cases, unchecked exceptions reflect programming logic
errors that are not recoverable. For example, a
NullPointerException IS thrown If you access an object
through a reference variable before an object is assigned to it; an
IndexOutOfBoundsException IS thrown If you access an
element in an array outside the bounds of the array.

Unchecked exceptions can occur anywhere in a program. To
avoid overuse of try-catch blocks, Java does not require the
programmer write code to catch or declare unchecked exceptions.

”
COP 3330: Exception Handling In Java Page 23 © Mark Llewellyn gjj

Understanding Exception Handling

 Java’s exception handling model Is based on three operations:
declaring an exception, throwing an exception, and catching an
exception.

declare exception

methodl ()

(Exception ex)
process exception;

\

catch exception

method2 () throws Exception {

if (an error occurs)

throw exception

COP 3330: Exception Handling In Java

© Mark Llewellyn

Declaring Exceptions

 |n Java, the statement currently being executed belongs
to a method. The Java Interpreter invokes the main
method for a Java application (the Web browser
Invokes an applet’s no-arg constructor and then the
init method for a Java applet).

« Every method must state the types of checked exception
It might throw. This is known as declaring exceptions.
Exceptions must be explicitly declared in the method
declaration so that the caller of the method Is informed
of the exception.

» To declare an exception in a method, use the throws
keyword in the method declaration as shown:

public void myMethod () throws IOException

(o

COP 3330: Exception Handling In Java Page 25 © Mark Llewellyn g’);

Declaring Exceptions

 The throws keyword indicates that myMethod might
throw an IOException.

- If the method might throw multiple exceptions, add a
list of the exceptions, separated by commas, after
throws, such as:

public void myMethod ()

throws Exceptionl, Exception2z2,

. . « ExceptionN

» Note: If a method does not declare exceptions In the
superclass, you cannot override it to declare exceptions
In the subclass.

#
COP 3330: Exception Handling In Java Page 26 © Mark Llewellyn @j

Throwing Exceptions

« A program that detects an error can create an instance of an

appropriate exception type and throw it. This is known as
throwing an exception.

As an example, suppose the program detects that an argument
passed to the method violates the method contract (e.g., the
argument must be non-negative, but a negative argument IS
passed); the program can create an instance of
IllegalArgumentException and throw it as follows:

throw new IllegalArgumentException (“*Wrong Argument”) ;

IllegalArgumentException IS an exception class in the
Java API. In general, each exception class in the Java API has at
least two constructors, a no-arg constructor, and a constructor
with a String argument that describes the exception. This
argument Is called the exception message, which can be obtained
using getMessage () .

#
COP 3330: Exception Handling In Java Page 27 © Mark Llewellyn @j

Catching Exceptions

When an exception is thrown, it can be caught and handled in a
try-catch block.

try {
statements; //statements that may throw exceptions
}
catch (Exceptionl exVarl) {
//handler for exceptionl;
}
catch (Exception2?2 exVar2?2) {

//handler for exception2;

catch (ExceptionN exVarN) {

//handler for exceptionN;

COP 3330: Exception Handling In Java © Mark Llewellyn

Catching Exceptions

If no exceptions arise during the execution of the t ry block, the
catch blocks are skipped.

If one of the statements inside the try block throws an
exception, Java skips the remaining statements in the try block
and starts the process of finding the code to handle the exception.

The code that handles the exception is called the exception
handler.

The exception handler is found by propagating the exception
backward through a chain of method calls, starting from the
current method.

Each catch block is examined in turn, from first to last, to see
whether the type of the exception object is an instance of the
exception class in the catch block.

If so, the exception object iIs assigned to the variable declared,
and the code in the catch block is executed.
-

COP 3330: Exception Handling In Java Page 29 © Mark Llewellyn g’);

Catching Exceptions

If no handler is found, Java exits this method, passes the exception to
the method that invoked that method, and continues the same process
to find a handler.

If no handler is found in the chain of methods being invoked, the
program terminates and prints an error message on the console.

This process is known as catching an exception.

To better understand this scenario, consider the situation shown on the
next two pages.

— Suppose the main method invokes methodl, methodl invokes method?2,
method2 invokes method3, and an exception occurs in method3.

— If method3 cannot handle the exception, method3 is aborted and the control is
returned to method2. If the exception type is Exception3, it is caught by the
catch block for handling ex3 in method2. Statement5 is skipped, and
statement6 is executed.

— If the exception type is Exception2, method?2 is aborted with control returning
to method1, and the exception is caught by the catch block for handling ex2 in
method1, statement3 is skipped and statement4 is executed.

’

COP 3330: Exception Handling In Java Page 30 © Mark Llewellyn g");

Catching Exceptions

Suppose the main method invokes methodl, methodl invokes method2,
method?2 invokes method3, and an exception occurs in methods3.

If method3 cannot handle the exception, method3 is aborted and the
control is returned to method2. If the exception type Is Exception3, it is
caught by the catch block for handling ex3 in method2. Statement5 is
skipped, and statement6 Is executed.

If the exception type is Exception2, method2 is aborted with control
returning to methodl, and the exception is caught by the catch block for
handlinggl ex2 in methodl, statement3 is skipped and statement4 is
execute

If the exception type Is Exceptionl, methodl is aborted with control
returning to main, and the exception is caught by the catch block for
handling exceptlon ex1 in main, statementl is skipped, and statement2 is
executed.

If the exception type is not Exceptionl, Exception2, or Exception3, the
exception 1s not caught and the program terminates, statementl and
statement2 are not executed.

’

COP 3330: Exception Handling In Java Page 31 © Mark Llewellyn g").

main method { methodl { method? { An exception
. . . is thrown in
try try { / try { / method3
invoke methodl;,/’////’ invoke method?2; iﬂ&oke method3;',/”’/’

statementl; statement3; statementh;

} J }

catch (Exceptionl exl) ({ catch (Exception? ex?2) { catch (Exception3 ex3) ({
Process exl; Process ex?; Process ex3;

J } }

statement?; statement4; statement6;

J } J

Call Stack
method3

method? method?

methodl methodl methodl

main method main method main method

main method

COP 3330: Exception Handling In Java Page 32 © Mark Llewellyn

Catching Exceptions

» Various exceptions can be derived from a common superclass. |If
a catch block catches exception objects of a superclass, it can

catch all the exception objects of the subclasses of that
superclass.

The order in which exceptions are specified In catch blocks is
Important. A compilation error will result if a catch block for a
superclass type appears before a catch block for a subclass type.

try { _ try { _
) }

catch (Exception ex) { catch (RunTimeException ex) {

) }

catch (RunTimeException ex) { catch (Exception ex) {

COP 3330: Exception Handling In Java Page 33 © Mark Llewellyn

Catching Exceptions

 Java forces you to deal with checked exceptions. If a method declares
a checked exception (i.e., an exception other than Error or
RunTimeException) you must invoke it in a try-catch block or
declare to throw the exception in the calling method.

» For example, suppose method p1 invokes method p2 and p2 may throw
a checked exception, then you must write the code as in one of the two
options shown below:

void pl () {

try { void pl () throws IOException ({
P2 () ;
} P2 () ;
catch (IOException ex) {
}
} throwing the exception

catching the exception

#
COP 3330: Exception Handling In Java Page 34 © Mark Llewellyn @j

Getting Informat

lon From Exceptions

An Exception object contains valuable information about the
exception. You can use the following instance methods in the
java.lang.Throwable class to get information regarding the
exception. The example on the next page illustrates using an

Exception object.

Java.lang.Throwable

+ 4+ + +

Returns the message of this object

Returns the concatenation of three strings: (1) the
full name of the exception class; (2) “: “ (a colon
and a space; (3) the getMessage () method.

getMessage () : String
toString () : String <
printStackTrace() : void
getStackTrace () :

X StackTraceElement

I

Prints the Throwable object and its call stack trace
information on the console.

Returns an array of stack trace eleme

stack trace pertaining to this throwable.

nts representing the

COP 3330: Exception Handling In Java

Page 35 © Mark Llewellyn

|J| TestExceptionjava &2

S For Exception Handling HNotes - COPF 3330 — Summer 2011
ff MJL 6-27/72011

pobklic class TestException {
= private =s=tatic int sum(int([] l1li=t) {
int result = 0;
for (int i = 0; i <= li=t.length; i++)
result 4= li=t[i]:
retorn result;
1/ /end method sum

public =tatic volid main(String arg=s[]) 1

try {
Bvztem. cut.println(sum (new int[] {1, 2, 3, 4, 5})):

}//fend try block

catch (Exception ex) {
ex.printStackTrace ()
Syvstem. out.println("\n" + ex.getMHMessage()):
System.out.println("\n™ + ex.toS5tring ()}
Svstem. cut.println("\n Trace information obtained from getStackTrace:"):

StackTraceElement[]traceElements = ex.getStackTrace ()

for (int i = 0; i < traceElements.length; i++) {
System.ocut.print ("Method: " + traceElements[i] .getMethodHame ()) -
System.cut.print ("(" + traceElements[i] .getClassHame () + ":"):
System.ocutf.println(traceElements[i] .getlineMumbexr () + "} ") :

}//end for stmt
}//end catch block
}//end main method
Y/ /end class TestException

COP 3330: Exception Handling In Java Page 36 © Mark Llewellyn “

El Console &

l g I getMessage() I

java.lang.ArrayIndexOutOfBoundsException: 5

toString()

Trace information obtained from getStackIrace:
Method: sum(TestException:3d) using getStackTrace()

Method: main(TestException:ls)

at TestException.sum(TestException.java:’)

at TestException.main(TestException.java:l3)

COP 3330: Exception Handling In Java © Mark Llewellyn

Example: Declaring, Throwing and Catching Exceptions

» Going back to our running example of the geometric objects, this
example modifies our Circle class.

* We now Include a setRadius method in the Circle class
that throws an TIllegalArgumentException If the
argument sent to newRadius Is negative.

COP 3330: Exception Handling In Java © Mark Llewellyn

>
z

) [J] GeometricObject.java -1 [J] GeometricObject.java rEE\] ¥ TestCircleWithExcept
| Exception Handling/src/GecmetricObjec

= /% Circle Class - Classes in Java
Extends GeocometricObject class — used in inheritance example

* MJL June 27| 2011
* HNo known bugs

public cla=ss CircleWithException extends GeometricChject {
private double radius;
private static int numbsrofdbjscts = 0) <«

New addition to class

S* default constructor =75
= poblic CircleWithException() 1
ffﬁ;gﬂgﬁgﬂ& following line for comnstructor chaining display
SiS5ystem.out..println ("In default Circle constructor.™) ;
thi={(1.0):
number0fdbjects++;
}1//end default constructor

JS* radius specific constructor *)
a2 public CircleWithException (double radius=s) {
ffﬁﬂggg&gﬂg following line for constructor chaining display
JABystem.ont..println ("In radius specific Circle constructor.™):
setRadius (radius) ;
numbesrdrfibhijects++;
}///fend radius specific constructor

New addition to class

S* Return radius */
= poblic doukle getRadiu=si() {
retorn radius:
}//end getRadius method

COP 3330: Exception Handling In Java Page 39 © Mark Llewellyn “

-

=\WithException. =2 [J] GeometricObject.java \I [J] GeometricObject.java 1@ TestCircleWithExcept 1 2

/% S5et a new radius */
= poblic void setRadius (double radius) throws IllegaliirgumentException {
if (radius >= 0)
thi=s.radiu=s = radiu=s;
el=ze throw new IllegalirgumentException (™ Radius cannol be negative™);
y//end setRadius method

/*% Return area */
= puoblic douoble getireal) {1
retorn radius * radius * Math.FI;
Y/ /end gethrea method

New addition to class

J* Beturn diameter */
= poblic douoble getDiameter() {1
retaorn 2 * radius;
}//end getDiameter method

/% Return perimeter =/
= pobklic donble getPerimeter() {1

retorn 2 * radius * Math.PI:
Y/ /end getPerimeter method

- R?mm n'fmhér °f objects 7/) New addition to class
= puoblic static int getHumberOfChject=s() {
return numberOfdbjects:
Y/ /end geclumberOfObjects method

COP 3330: Exception Handling In Java Page 40 © Mark Llewellyn

Test Class for CircleWithException

- fe—y ey =

>

7] CircleWithException. | [J] GeometricObjectjava | J] TestCircleWithBxcept £3 . 3

Driver class to illustrate CircleWithExceptionClass

Tk B

" MJL June 27, 2011

public class TestCircleWithException {
= public static volid main(String arg=[]) {

tryd
CircleWithException cl = new CircleWithException(s)
CircleWithException cZ new CircleWithException(-5):
CircleWithException 3 = new CircleWithException (Q0)

}//fend try block

catch (IllegalArgumentException ex) {
System.ocut.println(ex) ;

¥Y//end cactch block

System.cut.println ("Hunkber of object created was: " +
CircleWithException.getNumberOfobjects()) :
Y//end main method
Y//end class TestCircleWithException

COP 3330: Exception Handling In Java Page 41 © Mark Llewellyn

=)

File Edit Source Refactor Navigate Search Project Bun Window Help

F-0-Q- HE- dO 4 T |6 Java |
dEE H-F oG

FECDI\SD'EEE\ H%IL'-‘:;EEEE'F‘J"EEH
<terminated> TestCircleWithException [Java Application] C:\Program Files\Javaljredtbin\javaw.exe (Jun 27, 2011 1:33:
t[n GeometricCbhject default constructor method # @
In GeometricObject default constructor method

java.lang.IlllegalArqumentException: Radius cannot be negative
Humber of object created was: 1% | Whydid only 1 circle get created? Where is c3?

=

Answer: The exception occurred creating c2.
Once the exception was handled no more
statement in the try block are executed, so c3 was
never built.

5[&@@}

COP 3330: Exception Handling In Java Page 42 © Mark Llewellyn

The finally Clause

Occasionally, you may want some code to be executed regardless of
whether an exception occurs or is caught.

Java has a finally clause that can be used to accomplish this
objective.

The syntax for the finally clause looks like this:

try |
statements;

}

catch (TheException ex) {

//handling ex;

}

finally {
finalStatements;

COP 3330: Exception Handling In Java © Mark Llewellyn

The finally Clause

The code in the finally block is executed under all
circumstances, regardless of whether an exception occurs in the
try block or is caught.

Consider three possible cases:

If no exception arises In the try block. finalStatements IS
executed, and the next statement after the try block is executed.

If one of the statements causes an exception in the try block that is
caught in a catch block, the other statements in the try block are
skipped, the catch block iIs executed, and the finally clause is
executed. If the catch block does not re-throw an exception, the next
statement after the try block Is executed. If it does re-throw an
exception, the exception is passed on to the caller of this method.

If one of the statements causes an exception that is not caught in any
catch block, the other statements in the try block are skipped, the
finally clause is executed, and the exception is passed to the caller
of this method.

’

COP 3330: Exception Handling In Java Page 44 © Mark Llewellyn g").

The finally Clause

« The finally block executes even If there Is a
return statement prior to reaching the finally block.

* The catch block may be omitted when the finally
clause Is used.

« A common use of the finally clause Is In I/O
programming. To ensure that a flle IS closed under all
circumstances, you would place a file closing statement
In the finally block. The example on the next page
Ilustrates this use of the £inally clause.

COP 3330: Exception Handling In Java Page 45 © Mark Llewellyn g").

J) CircleWithException. |] TestCircleWithExcept W’q

SS Class to illustrate the use of the finally clause in a
S try/catch mechanism
SO MJIL June 27, 2011

public clas=s FinallyDemo {
= public =static volid main(String arg=s[]) 4

jJava.io.PrintWriter output = nuoll;
try {
Sicreate a file
output = new java.lio.PrintWriter("text.txt"):

ffwrite formatted output to the file
output.print ("This is the first line in the file.\n"):
output.print ("This is the sSecond line in the file.\n"):
output.println("Welcome to file I/0 in Java™):

}/fend try block

catch (java.io.ICException ex) {
ex.printS5tackTrace () :

}//end catch block

finally {
ffclaose the file in all cases
if (output !'= nunll) output.close|():

Y//end finally block
System.ocut.println("Program terminates successfully!™):

Y/ /end main method
Y/ /end class FinallyDemo

COP 3330: Exception Handling In Java Page 46 © Mark Llewellyn

= W —— ® % | G REEIE = 3~y

<terminated> FinallyDemo [Java Application] C\Program Files'Java'yreb\bin'javaw.exe (Jun 27, 2011 1:59:20 PM)

IPrr:lgram terminates successfully!<

Program output to console

L~
@ . | « Exception Handling » 4"} dhed | Search

File Edit View Tools

N ‘ Organize = ~ [Open ~ & E-mail g Burn
Favorite Links Name Date modified File created in current project
| Documents W settings 6/23/2011 1:32. P4 workspace (by default).
. i bin 6,/27.2817 1:51 PM File Fq
= Pictures L src 6/27/2011 1:51 PM
B Music | .classpath 6/23/2011 1:52 PM
More » L] .project 6/23/2011 1:52 PM
SR v | | textibd 6/27/2011 1:59 PM
| Desktop - Contents of the file.
- v ™
i Documents PC A Users\Mark LiewellymechneehZOP 2220 - Summer 2011\Excepti... | s(=ls| i
. Downloads — . R ——
|/ eclipse i Eile Edit Search View Epfoding Language Settings Macro Run
. .metadata L4 TextFX Plugins Window/ X
. —— —
L COP 333 - Summer 201 OB - Q4D dCimum| t B
| .metadata
| Abstract Classes | B license b IE Aurse_shiles.cas IE READ MEIN! td IE Gant java IE indezchtm| ¥ | *
Dacie lasim - 4 i
textixt Date modified: 6/27/2011 1:59 PM Shared with: | 1 [fhis is the first line in the file.
TXT File Size: 102 bytes Z Thi=s i=s the second line in the file.
Date created: 6/27/2011 1:56 PM 3 Welcomse to file IS0 in Java
4

Ln:l Col:1 Sel:0 LIMIX AMSI INS

T L N —

COP 3330: Exception Handling In Java Page 47 © Mark Llewellyn

When To Use Exception Handling

The try block contains the code that Is executed In normal
circumstances.

The catch block contains the code that Is executed in exceptional
circumstances.

Exception handling separates error-handling code from normal
programming tasks, thus making programs easier to read and to
modify.

Be aware, however, that exception handling usually requires more
time and resources, because it requires instantiating a new exception
object, rolling back the call stack, and propagating the exception
through the chain of methods invoked to search for the handler.

An exception occurs in a method. If you want the exception to be
processed by its caller, you should create an exception object and
throw it. If you handle the exception in the method where it occurs,
there is no need to throw or use exceptions.

#
COP 3330: Exception Handling In Java Page 48 © Mark Llewellyn @j

When To Use Exception Handling

In general, common exceptions that may occur in multiple classes
In a project are candidates for exception classes.

Simple errors that may occur in individual methods are best handled
locally without throwing exceptions.

When should you use try-catch block in the code?

try {

Improper use of try- System.out.println (refVar.toString())

catch block, This }
code should be catch (NullPointerException ex) {

replace by: ¢ System.out.println(“refVar 1s null”);

}

if (refVvar != null)
System.out.println(refVar.toString())

else
System.out.println (“refvVar is null”);

}

COP 3330: Exception Handling In Java © Mark Llewellyn

Rethrowing Exceptions

« Java allows an exception handler to re-throw the exception if the

handler cannot process the exception or simply wants its caller to be
notified of the exception.

« The syntax may look like this:

try {
statements;
}
catch (TheException ex) {

//perform operations before exit;
throw ex;

COP 3330: Exception Handling In Java © Mark Llewellyn

Chained Exceptions

Sometimes a catch block will re-throw the original exception and
sometimes you may need to throw a new exception (with additional
Information) along with the original exception.

This is called chained exceptions.
The example on the following page illustrates chained exceptions.

COP 3330: Exception Handling In Java © Mark Llewellyn

>

1] TestCircleWithExcept | [J] FinallyDemoyjava | [J] *ChainedExceptions, &3 . s

S Class to illustrate chained exceptions in Java
SO MIL June 27, 2011

poblic class ChainedExceptions {
= poblic =tatic void main(String arg=[]) {
try {
methedl ()
VY /end try block
catch (Exception ex) 1
ex.printStackTrace() s
Y/ end catch block
}//end main method

= poklic static void methodl () throws Exception {
try {
methodZ ()
VY /end try block

catch (Exception ex) 1
throw new Exception ("New exception info from methodl ()",

Y/ //end catech bBlock
}//end method methodl

= poblic =tatic void methodZ () throws Exception {
throw new Exception ("Hew exception infor from methodZ (}™)
}///end method methudﬂ
}y//end class ChainedExceptions

ex) s

COP 3330: Exception Handling In Java Page 52 © Mark Llewellyn

— =
TLJT

E Console 7 H Eﬁ| R G
<terminated> ChainedExceptions [Java Application] C:\Program Files\Java\jreb\bin\javaw.exe (Jun 27, 2011 2:23:02 PM)]
hava.lang.ExcEptiun: New exception info from methodl ()

at ChainedExceptions.methodl (ChainedExceptions.java:l9)

at ChainedExceptionz.main(ChainedExceptions.java:T)

Caused by: java.lang.Exception: New exception info from methodZ ()

at ChainedExceptionz.method? (ChainedExceptions.java:24)

at ChainedExceptionz.methodl (ChainedExceptions.java:ls)

. 1 more

The main method invokes method1() and method1() invokes
method2(). Method2() throws an exception. The exception thrown by
method2() is caught in the catch block of method1() and is wrapped in
a new exception. The new exception created by methodl() is thrown
and caught in the catch block of the main method, which prints the
stack trace. So you see the new exception thrown by method1() first,
followed by the exception thrown by method2().

(.
COP 3330: Exception Handling In Java Page 53 © Mark Llewellyn gjj

