
COP 3330: Exception Handling In Java Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2010

Exception Handling In Java

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2010

COP 3330: Exception Handling In Java Page 2 © Mark Llewellyn

Exception Handling In Java

• When a program encounters a runtime error, it

terminates abnormally.

• What we would like as software developers, is

for our programs to either continue execute or

else terminate gracefully in the event of a run-

time error.

• In Java an exception is an object created from an

exception class.

COP 3330: Exception Handling In Java Page 3 © Mark Llewellyn

Exception Handling In Java

• To demonstrate exception handling, consider the following code
that reads two integers and computes their quotient. What
happens when you enter 5 and 2? What happens when you enter
5 and 0?

COP 3330: Exception Handling In Java Page 4 © Mark Llewellyn

Exception Handling In Java

Enter 6 and 3…no problem!

Enter 6 and 0…oops!

Run-time exception

COP 3330: Exception Handling In Java Page 5 © Mark Llewellyn

Exception Handling In Java
• A simple fix to the quotient code to fix this problem is shown below.

Simple fix is to insert an if

statement to make sure that the 2nd

number is not zero.

COP 3330: Exception Handling In Java Page 6 © Mark Llewellyn

Exception Handling In Java

COP 3330: Exception Handling In Java Page 7 © Mark Llewellyn

Exception Handling In Java

• We can rewrite the quick fix solution to our
Quotient program using exception handling.
This is shown on the next page.

• Notice that the exception handling version is
somewhat larger than the simple fix version.
This example is too small to actually achieve
any serious benefit from exception handling and
as such we would not typically employ
exception handling in this sort of situation…this
was an example only.

COP 3330: Exception Handling In Java Page 8 © Mark Llewellyn

try block

catch block

COP 3330: Exception Handling In Java Page 9 © Mark Llewellyn

Exception Handling In Java

Output from the catch block

that caught the thrown

exception

COP 3330: Exception Handling In Java Page 10 © Mark Llewellyn

Exception Handling In Java

• The try block contains the code that is executed in normal
circumstances.

• The catch block contains the code that is executed when an
exception occurs.

• In this case, the program throws an exception by executing

throw new ArithmeticException(“Divisor cannot be zero”);

• The value thrown, is called an exception.

• The execution of a throw statement is called throwing an
exception.

• The exception is an object created from an exception class. In
this case, the exception class is
java.lang.ArithmeticException.

COP 3330: Exception Handling In Java Page 11 © Mark Llewellyn

Exception Handling In Java

• When an exception is thrown, the normal execution
flow is interrupted.

• As the name suggests, “throwing an exception” is to
pass the exception from one place to another.

• The exception is caught by the catch block.

• The code in the catch block is executed to handle the
exception. Afterward, the statement immediately after
the catch block is executed (i.e., normal execution flow
resumes).

• The throw statement is analogous to a method call, but
instead of calling a method, it calls a catch block.

COP 3330: Exception Handling In Java Page 12 © Mark Llewellyn

Exception Handling In Java

• In this sense, a catch block is like a method definition
with a parameter that matches the type of the value
being thrown.

• Unlike a method, after executing the catch block, the
program control does not return back to the throw

statement; instead, it executes the next statement after
the catch block.

• The identifier ex in the catch block header:

catch (ArithmeticException ex)

acts very much like a parameter in a method. So this
parameter is referred to as a catch block parameter.

COP 3330: Exception Handling In Java Page 13 © Mark Llewellyn

Exception Handling In Java

• The type (e.g. ArithmeticException)

preceding ex specifies what kind of exception

the catch block can catch.

• Once the exception is caught, you can access the

thrown value from this parameter in the body of
a catch block.

• The following page shows a template for a
generic try-throw-catch block.

COP 3330: Exception Handling In Java Page 14 © Mark Llewellyn

Exception Handling In Java

try {

code to try;

throw an exception with a throw statement or from

a method if necessary.

more code to try;

}

catch (type ex) {

code to process the exception;

}

generic try-throw-catch block

COP 3330: Exception Handling In Java Page 15 © Mark Llewellyn

Advantages of Exception Handling

• The biggest advantage of exception handling in

Java is the ability it provides for a method to

throw an exception back to its caller.

• Without this capability the method would be

required to either handle the exception itself or

to terminate the program.

• The following example illustrates this

advantage.

COP 3330: Exception Handling In Java Page 16 © Mark Llewellyn

Exception occurs

here… thrown back to

caller in main

COP 3330: Exception Handling In Java Page 17 © Mark Llewellyn

Exception occurs

here… thrown back to

caller in main

COP 3330: Exception Handling In Java Page 18 © Mark Llewellyn

Exception Types

• The catch block parameter in the QuotientWithMethod
example is of the ArithmeticException type.

• You can use the Throwable class or any subclass of
Throwable. ArithmeticException is a subclass of
Throwable.

• The Throwable class is contained in the java.lang package,
and subclasses of Throwable are contained in various packages.
Errors related to GUI components are included in the java.awt
package; numeric exceptions are included in the java.lang
package, because they are related to the java.lang.Number
class.

• You can create your own exception classes by extending
Throwable or a subclass of Throwable.

• The following page shows some of Java’s predefined exception
classes.

COP 3330: Exception Handling In Java Page 19 © Mark Llewellyn

Exception Types

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

COP 3330: Exception Handling In Java Page 20 © Mark Llewellyn

System Errors

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

System errors are thrown by JVM and

represented in the Error class. The

Error class describes internal system

errors. Such errors rarely occur. If one

does, there is little you can do beyond

notifying the user and trying to

terminate the program gracefully.

COP 3330: Exception Handling In Java Page 21 © Mark Llewellyn

Exceptions

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

Exceptions describes

errors caused by your

program and external

circumstances. These

errors can be caught and

handled by your program.

COP 3330: Exception Handling In Java Page 22 © Mark Llewellyn

Runtime Exceptions

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

A RuntimeException is

caused by programming

errors, such as bad

casting, accessing an

out-of-bounds array, and

numeric errors.

COP 3330: Exception Handling In Java Page 23 © Mark Llewellyn

Checked vs. Unchecked Exceptions

• RuntimeException, Error, and their subclasses are
known as unchecked exceptions. All other exceptions are known
as checked exceptions.

• Checked exceptions means that the compiler forces the
programmer to check and deal with them.

• In most cases, unchecked exceptions reflect programming logic
errors that are not recoverable. For example, a
NullPointerException is thrown if you access an object
through a reference variable before an object is assigned to it; an
IndexOutOfBoundsException is thrown if you access an
element in an array outside the bounds of the array.

• Unchecked exceptions can occur anywhere in a program. To
avoid overuse of try-catch blocks, Java does not require the
programmer write code to catch or declare unchecked exceptions.

COP 3330: Exception Handling In Java Page 24 © Mark Llewellyn

Understanding Exception Handling

• Java’s exception handling model is based on three operations:
declaring an exception, throwing an exception, and catching an
exception.

method1() {

}

try {

invoke method2;

}

catch (Exception ex) {

process exception;

}

method2() throws Exception {

if (an error occurs) {

}

}

throw new Exception();

catch exception

throw exception

declare exception

COP 3330: Exception Handling In Java Page 25 © Mark Llewellyn

Declaring Exceptions

• In Java, the statement currently being executed belongs
to a method. The Java interpreter invokes the main
method for a Java application (the Web browser
invokes an applet’s no-arg constructor and then the
init method for a Java applet).

• Every method must state the types of checked exception
it might throw. This is known as declaring exceptions.
Exceptions must be explicitly declared in the method
declaration so that the caller of the method is informed
of the exception.

• To declare an exception in a method, use the throws
keyword in the method declaration as shown:

public void myMethod() throws IOException

COP 3330: Exception Handling In Java Page 26 © Mark Llewellyn

Declaring Exceptions

• The throws keyword indicates that myMethod might
throw an IOException.

• If the method might throw multiple exceptions, add a
list of the exceptions, separated by commas, after
throws, such as:

public void myMethod()

throws Exception1, Exception2,

. . . ExceptionN

• Note: if a method does not declare exceptions in the
superclass, you cannot override it to declare exceptions
in the subclass.

COP 3330: Exception Handling In Java Page 27 © Mark Llewellyn

Throwing Exceptions

• A program that detects an error can create an instance of an
appropriate exception type and throw it. This is known as
throwing an exception.

• As an example, suppose the program detects that an argument
passed to the method violates the method contract (e.g., the
argument must be non-negative, but a negative argument is
passed); the program can create an instance of
IllegalArgumentException and throw it as follows:

throw new IllegalArgumentException(“Wrong Argument”);

• IllegalArgumentException is an exception class in the
Java API. In general, each exception class in the Java API has at
least two constructors, a no-arg constructor, and a constructor
with a String argument that describes the exception. This
argument is called the exception message, which can be obtained
using getMessage().

COP 3330: Exception Handling In Java Page 28 © Mark Llewellyn

Catching Exceptions

• When an exception is thrown, it can be caught and handled in a
try-catch block.

try {

statements; //statements that may throw exceptions

}

catch (Exception1 exVar1) {

//handler for exception1;

}

catch (Exception2 exVar2) {

//handler for exception2;

}

. . .

catch (ExceptionN exVarN) {

//handler for exceptionN;

}

COP 3330: Exception Handling In Java Page 29 © Mark Llewellyn

Catching Exceptions

• If no exceptions arise during the execution of the try block, the
catch blocks are skipped.

• If one of the statements inside the try block throws an
exception, Java skips the remaining statements in the try block
and starts the process of finding the code to handle the exception.

• The code that handles the exception is called the exception
handler.

• The exception handler is found by propagating the exception
backward through a chain of method calls, starting from the
current method.

• Each catch block is examined in turn, from first to last, to see
whether the type of the exception object is an instance of the
exception class in the catch block.

• If so, the exception object is assigned to the variable declared,
and the code in the catch block is executed.

COP 3330: Exception Handling In Java Page 30 © Mark Llewellyn

Catching Exceptions

• If no handler is found, Java exits this method, passes the exception to
the method that invoked that method, and continues the same process
to find a handler.

• If no handler is found in the chain of methods being invoked, the
program terminates and prints an error message on the console.

• This process is known as catching an exception.

• To better understand this scenario, consider the situation shown on the
next two pages.

– Suppose the main method invokes method1, method1 invokes method2,
method2 invokes method3, and an exception occurs in method3.

– If method3 cannot handle the exception, method3 is aborted and the control is
returned to method2. If the exception type is Exception3, it is caught by the
catch block for handling ex3 in method2. Statement5 is skipped, and
statement6 is executed.

– If the exception type is Exception2, method2 is aborted with control returning
to method1, and the exception is caught by the catch block for handling ex2 in
method1, statement3 is skipped and statement4 is executed.

COP 3330: Exception Handling In Java Page 31 © Mark Llewellyn

Catching Exceptions

• Suppose the main method invokes method1, method1 invokes method2,
method2 invokes method3, and an exception occurs in method3.

• If method3 cannot handle the exception, method3 is aborted and the
control is returned to method2. If the exception type is Exception3, it is
caught by the catch block for handling ex3 in method2. Statement5 is
skipped, and statement6 is executed.

• If the exception type is Exception2, method2 is aborted with control
returning to method1, and the exception is caught by the catch block for
handling ex2 in method1, statement3 is skipped and statement4 is
executed.

• If the exception type is Exception1, method1 is aborted with control
returning to main, and the exception is caught by the catch block for
handling exception ex1 in main, statement1 is skipped, and statement2 is
executed.

• If the exception type is not Exception1, Exception2, or Exception3, the
exception is not caught and the program terminates, statement1 and
statement2 are not executed.

COP 3330: Exception Handling In Java Page 32 © Mark Llewellyn

main method {

 ...

 try {

 ...

 invoke method1;
 statement1;
 }

 catch (Exception1 ex1) {

 Process ex1;
 }

 statement2;
}

method1 {

 ...

 try {

 ...

 invoke method2;
 statement3;
 }

 catch (Exception2 ex2) {

 Process ex2;
 }

 statement4;
}

method2 {

 ...

 try {

 ...
 invoke method3;

 statement5;
 }

 catch (Exception3 ex3) {

 Process ex3;
 }
 statement6;
}

An exception

is thrown in

method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

COP 3330: Exception Handling In Java Page 33 © Mark Llewellyn

Catching Exceptions

• Various exceptions can be derived from a common superclass. If
a catch block catches exception objects of a superclass, it can
catch all the exception objects of the subclasses of that
superclass.

• The order in which exceptions are specified in catch blocks is
important. A compilation error will result if a catch block for a
superclass type appears before a catch block for a subclass type.

try {

. . .

}

catch (Exception ex) {

. . .

}

catch (RunTimeException ex) {

. . .

}

Wrong order
try {

. . .

}

catch (RunTimeException ex) {

. . .

}

catch (Exception ex) {

. . .

}

Correct order

COP 3330: Exception Handling In Java Page 34 © Mark Llewellyn

Catching Exceptions

• Java forces you to deal with checked exceptions. If a method declares
a checked exception (i.e., an exception other than Error or
RunTimeException) you must invoke it in a try-catch block or
declare to throw the exception in the calling method.

• For example, suppose method p1 invokes method p2 and p2 may throw
a checked exception, then you must write the code as in one of the two
options shown below:

void p1() {

try {

p2();

}

catch (IOException ex) {

. . .

}

}

void p1() throws IOException {

. . .

p2();

. . .

}

catching the exception

throwing the exception

COP 3330: Exception Handling In Java Page 35 © Mark Llewellyn

Getting Information From Exceptions

• An Exception object contains valuable information about the
exception. You can use the following instance methods in the
java.lang.Throwable class to get information regarding the
exception. The example on the next page illustrates using an
Exception object.

java.lang.Throwable

+ getMessage(): String

+ toString(): String

+ printStackTrace(): void

+ getStackTrace():

StackTraceElement[]

Returns the message of this object

Returns the concatenation of three strings: (1) the

full name of the exception class; (2) “: “ (a colon
and a space; (3) the getMessage() method.

Prints the Throwable object and its call stack trace

information on the console.

Returns an array of stack trace elements representing the

stack trace pertaining to this throwable.

COP 3330: Exception Handling In Java Page 36 © Mark Llewellyn

COP 3330: Exception Handling In Java Page 37 © Mark Llewellyn

printStackTrace()

getMessage()

toString()

using getStackTrace()

COP 3330: Exception Handling In Java Page 38 © Mark Llewellyn

Example: Declaring, Throwing and Catching Exceptions

• Going back to our running example of the geometric objects, this
example modifies our Circle class.

• We now include a setRadius method in the Circle class
that throws an IllegalArgumentException if the
argument sent to newRadius is negative.

COP 3330: Exception Handling In Java Page 39 © Mark Llewellyn

New addition to class

New addition to class

COP 3330: Exception Handling In Java Page 40 © Mark Llewellyn

New addition to class

New addition to class

COP 3330: Exception Handling In Java Page 41 © Mark Llewellyn

Test Class for CircleWithException

COP 3330: Exception Handling In Java Page 42 © Mark Llewellyn

Why did only 1 circle get created? Where is c3?

Answer: The exception occurred creating c2.

Once the exception was handled no more

statement in the try block are executed, so c3 was

never built.

COP 3330: Exception Handling In Java Page 43 © Mark Llewellyn

The finally Clause

• Occasionally, you may want some code to be executed regardless of
whether an exception occurs or is caught.

• Java has a finally clause that can be used to accomplish this
objective.

• The syntax for the finally clause looks like this:

try {

statements;

}

catch (TheException ex) {

//handling ex;

}

finally {

finalStatements;

}

COP 3330: Exception Handling In Java Page 44 © Mark Llewellyn

The finally Clause

• The code in the finally block is executed under all
circumstances, regardless of whether an exception occurs in the
try block or is caught.

• Consider three possible cases:

1. If no exception arises in the try block. finalStatements is
executed, and the next statement after the try block is executed.

2. If one of the statements causes an exception in the try block that is
caught in a catch block, the other statements in the try block are
skipped, the catch block is executed, and the finally clause is
executed. If the catch block does not re-throw an exception, the next
statement after the try block is executed. If it does re-throw an
exception, the exception is passed on to the caller of this method.

3. If one of the statements causes an exception that is not caught in any
catch block, the other statements in the try block are skipped, the
finally clause is executed, and the exception is passed to the caller
of this method.

COP 3330: Exception Handling In Java Page 45 © Mark Llewellyn

The finally Clause

• The finally block executes even if there is a
return statement prior to reaching the finally block.

• The catch block may be omitted when the finally
clause is used.

• A common use of the finally clause is in I/O
programming. To ensure that a file is closed under all
circumstances, you would place a file closing statement
in the finally block. The example on the next page
illustrates this use of the finally clause.

COP 3330: Exception Handling In Java Page 46 © Mark Llewellyn

The finally Clause

COP 3330: Exception Handling In Java Page 47 © Mark Llewellyn

The finally Clause

Program output to console

File created in current project

workspace (by default).

Contents of the file.

COP 3330: Exception Handling In Java Page 48 © Mark Llewellyn

When To Use Exception Handling

• The try block contains the code that is executed in normal
circumstances.

• The catch block contains the code that is executed in exceptional
circumstances.

• Exception handling separates error-handling code from normal
programming tasks, thus making programs easier to read and to
modify.

• Be aware, however, that exception handling usually requires more
time and resources, because it requires instantiating a new exception
object, rolling back the call stack, and propagating the exception
through the chain of methods invoked to search for the handler.

• An exception occurs in a method. If you want the exception to be
processed by its caller, you should create an exception object and
throw it. If you handle the exception in the method where it occurs,
there is no need to throw or use exceptions.

COP 3330: Exception Handling In Java Page 49 © Mark Llewellyn

When To Use Exception Handling

• In general, common exceptions that may occur in multiple classes
in a project are candidates for exception classes.

• Simple errors that may occur in individual methods are best handled
locally without throwing exceptions.

• When should you use try-catch block in the code?

try {

System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

System.out.println(“refVar is null”);

}

if (refVar != null)

System.out.println(refVar.toString());

else

System.out.println(“refVar is null”);

}

Improper use of try-

catch block, This

code should be

replace by:

COP 3330: Exception Handling In Java Page 50 © Mark Llewellyn

Rethrowing Exceptions

• Java allows an exception handler to re-throw the exception if the
handler cannot process the exception or simply wants its caller to be
notified of the exception.

• The syntax may look like this:

try {

statements;

}

catch (TheException ex) {

//perform operations before exit;

throw ex;

}

COP 3330: Exception Handling In Java Page 51 © Mark Llewellyn

Chained Exceptions

• Sometimes a catch block will re-throw the original exception and
sometimes you may need to throw a new exception (with additional
information) along with the original exception.

• This is called chained exceptions.

• The example on the following page illustrates chained exceptions.

COP 3330: Exception Handling In Java Page 52 © Mark Llewellyn

COP 3330: Exception Handling In Java Page 53 © Mark Llewellyn

Chained Exceptions

The main method invokes method1() and method1() invokes

method2(). Method2() throws an exception. The exception thrown by

method2() is caught in the catch block of method1() and is wrapped in

a new exception. The new exception created by method1() is thrown

and caught in the catch block of the main method, which prints the

stack trace. So you see the new exception thrown by method1() first,

followed by the exception thrown by method2().

